sdiehl/tinyjit
Haskell JIT
{ "createdAt": "2016-01-02T00:59:31Z", "defaultBranch": "master", "description": "Haskell JIT", "fullName": "sdiehl/tinyjit", "homepage": "http://www.stephendiehl.com/posts/monads_machine_code.html", "language": "Haskell", "name": "tinyjit", "pushedAt": "2020-01-19T12:06:10Z", "stargazersCount": 186, "topics": [], "updatedAt": "2025-09-30T17:48:57Z", "url": "https://github.com/sdiehl/tinyjit"}Haskell JIT Example
Section titled “Haskell JIT Example”Tiny example of building a intermediate language that JIT compiles Haskell DSL into x86-64 machine code.
The factorial function can be written in assembly, taking the input value in
%rcx and computing the resulting value in %rax.
.global main
main: mov rcx, 5 mov rax, 1.factor: mul rcx loop .factor retIn our Haskell logic we compose these operations inside of the X86 monad.
factorial :: Int64 -> X86 ()factorial n = do mov rcx (I n) mov rax (I 1) l1 <- label mul rcx loop l1 retThe resulting logic can be JIT compiled inside of Haskell and invoked from inside the Haskell runtime by calling out to the JIT’d memory.
main :: IO ()main = do let jitsize = 256*1024 mem <- allocateMemory jitsize let jitm = assemble mem (factorial 5)
case jitm of Left err -> putStrLn err Right jitst -> do let machCode = _mach jitst fn <- jit mem machCode res <- fn putStrLn $ "Result: " <> show resThe machine code is generated.
48 c7 c1 05 00 00 00 48 c7 c0 01 00 00 00 48 f7 e1 e2 fc c3And executed to yield the result:
Result: 120License
Section titled “License”Released under the MIT License. Copyright (c) 2016-2020, Stephen Diehl